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ILAS President/Vice-President’s Annual Report: April 2000

1. The following have been elected to ILAS offices with terms
that began on March 1, 2000:

Secretary/Treasurer: Jeff Stuart
(three-year term ending February 28, 2003).

Board of Directors: Harm Bart and Steve Kirkland
(three-year terms ending February 28, 2003).

The following continue in their offices to which they were pre-
viously elected:

Vice President: Daniel Hershkowitz
(term ends February 28, 2001)

Board of Directors:
Jose Dias da Silva (term ends February 28, 2001),
Roger Horn (term ends February 28, 2001),
Nicholas Higham (term ends February 28, 2002),
Pauline van den Driessche (term ends February 28, 2002).

2. The President’s Advisory Committee consists of Chi-
Kwong Li (chair), Shmuel Friedland, Raphi Loewy, and Frank
Uhlig.

3. This fall there will be elections for Vice-President (the
term of Danny Hershkowitz ends on February 28, 2001) and
two members of the Board of Directors (the terms of Jose Dias
da Silva and Roger Horn end on February 28, 2001). The ILAS
2000 Nominating Committee has been appointed and it consists
of Wayne Barrett, Jane Day (chair), Nick Higham, Chi-Kwong
Li, and Michael Tsatsomeros.

4. An ad hoc committee has been appointed and charged to
consider changes in the ILAS Bylaws and to possibly make rec-
ommendations for change to the full ILAS membership for its
approval. The committee consists of Jose Dias da Silva, Raphi
Loewy, Hans Schneider (chair), and Frank Uhlig. Any ILAS
member who has concerns about our Bylaws should convey
them to a member of this committee.

5. The appointment of George P. H. Styan as an editor-in-
chief of IMAGE has been extended to May 31, 2003. In addition,
Hans Joachim “Jochen” Werner has been appointed as an editor-
in-chief of IMAGE for a six year term beginning June 1, 2000
(and so ending on May 31, 2006). Thus beginning June 1, 2000,
George and Jochen will be co-editors-in-chief of IMAGE.

6. The 8th ILAS Conference was held at the Universitat
Politénica de Catelunya in Barcelona, Spain, on July 19-22,
1999. A report on this conference can be found in IMAGE 23
(October 1999, p. 13).

7. The following ILAS conferences are planned for the near
future:

e The 9th ILAS Conference, Technion, Haifa, Israel, June
25-29, 2001.

o The 10th ILAS Conference, “Challenges in Matrix The-
ory,” Auburn University, Auburn, USA, June 10-13,
2002.

e The 11th ILAS Conference, Lisbon, Portugal, Summer
2004,

8. The seventh SIAM Conference on Applied Linear Algebra
will take place October 23-26, 2000, at North Carolina State
University in Raleigh, North Carolina, USA. This conference is
being held in cooperation with ILAS. There will be two ILAS
sponsored invited speakers at the conference: Eduardo Marques
de Sa’ and Hugo J. Woerdeman. The 1999 ILAS Board acted
as the selection committee. Under the terms of the agreement
with SIAM, ILAS members who are not already a member of
the SIAM Activity Group on Linear Algebra (SIAG/LA) will
have the same reduced registration fee that it offers SIAG/LA
members.

9. Steve Kirkland has been selected as the Olga Tauskky
Todd/John Todd Lecturer at the 9th ILAS conference in Haifa in
2001. The selection committee consisted of Roger Horn (chair),
Miki Neumann, Andre Ran, and Bit-Shun Tam.

10. Nick Trefethen has been selected as the LAA Lecturer at
the 9th ILAS conference in Haifa in 2001. This lecture is spon-
sored by Elsevier Science Inc., publishers of the journal “Lin-
ear Algebra and its Applications.” The selection committee con-
sisted of Moshe Goldberg, Volker Mehrmann (chair), George
Styan, and Hugo Woerdeman.

11. The next Hans Schneider Prize in Linear Algebra will be
awarded at the 10th ILAS conference in Auburn in 2002,

12. ILAS is continuing to consider requests for the sponsor-
ship of an ILAS Lecturer at a conference which is of substantial
interest to ILAS members. Each year, US$1,000 is set aside
to support such conferences, with a maximum amount of $500
available for any one conference. The guidelines are: (i) the
conference must be of interest to a substantial number of ILAS
members; (ii) the same “organization” is not eligible for sup-
port more than once every three years; (iii) geographically, the
support should be distributed widely.

The full ILAS Board (three executives and six other mem-
bers) reviews proposals and decides on which, if any, will re-
ceive support, and how much that support will be. Next year
we will review these guidelines and this may result in some
changes.

We are now accepting requests for conferences to be held
in 2001. Such requests should be submitted by September 1,
2000. Electronic requests are preferred and should be sent to
brualdi@math.wisc.edu. The request should include the follow-
ing:
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(1) date and place of conference

(2) sponsoring “organization”

(3) organizing committee

(4) purpose of conference

(5) invited speakers, to the extent known
(6) expected attendance

(7) proposed ILAS Lecturer, with some information about
the lecturer

(8) amount requested.

ILAS is sponsoring one lecture in 2000: Chandler Davis at the
5th Workshop on Numerical Ranges and Numerical Radii, Naf-
plio, Greece, on June 26-28, 2000 [cf. IMAGE 23, p. 16].

13. ILAS has endorsed two conferences to be held in 2000.
They are: (i) the Second Conference on Numerical Analysis and
Applications, June 11-15, 2000, University of Rousse, Rousse,
Builgaria; (ii) the International Workshop on Parallel matrix
algorithms and applications August 18-20, 2000, Neuchétel,
Switzerland—keynote speakers are Ahmed Sameh and Anna
Nagurney. ILAS has also endorsed the Rocky Mountain Math-
ematics Consortium’s Summer School on Matrix Theory to
be held at the University of Wyoming in 2001—the principal
speaker at the summer school will be Charles R. Johnson.

14. ELA—Electronic journal of Linear Algebra

¢ Volume 1, published in 1996, contained 6 papers.
¢ Volume 2, published in 1997, contained 2 papers.

o Volume 3—the Hans Schneider issue, published in 1998,
contained 13 papers.

o Volume 4, published in 1998 as well, contained 5 papers.
o Volume 5, published in 1999, contained 8 papers.

e Volume 6—Proceedings of the Eleventh Haifa Matrix
Theory Conference, is being published now. As of April
2000, it contains 6 papers.

e Volume 7, is being published now. As of April 2000, it
contains 3 papers. ELA’s primary site is at the Technion.
Mirror sites are located in Temple University, in the Uni-
versity of Chemnitz, in the University of Lisbon, in EMIS
(European Mathematical Information Service) offered by
the European Mathematical Society, and in EMIS’s 36
Mirror Sites.

Volumes 1-4 of ELA are now available in book form. The
list price is US$20 with a discounted price of US$16 for ILAS
members (these prices include postage and handling).

15.ILAS-NET: As of April 16, 2000, we have circulated 953
ILAS-NET announcements. ILAS-NET currently has 533 sub-
scribers.
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16. The ILAS INFORMATION CENTER (IIC) has a daily
average of 300 information requests (not counting FTP opera-
tions). IIC’s primary site is at the Technion. Mirror sites are lo-
cated in Temple University, in the University of Chemnitz, and
in the University of Lisbon.

Richard A. BRUALDI, ILAS President: brualdi @ math.wisc.edu
Dept. of Mathematics, University of Wisconsin-Madison
Van Vieck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, USA

Daniel HERSHKOWITZ, ILAS Vice-President:
hershkow @ tx.technion.ac.il
Dept. of Mathematics, Technion, Haifa 32000, Israel

Tribute to Jim Weaver

Tuesday, 29 February 2000, was Jim Weaver’s last day as ILAS
Secretary/Treasurer. As you may recall, Jim was appointed to
the position of Treasurer in 1989 by then president Hans Schnei-
der and was elected for two 2-year terms and one 4-year term
(03/92-02/94, 03/94-02/96, and 03/96-03/00). So for 11 years
he has served as ILAS Treasurer, which was changed to Secre-
tary/Treasurer as a result of changes in our Bylaws.

ILAS owes Jim a big debt of gratitude for his dedicated and
professional service for 11 years. As ILAS has grown and as-
sumed a more visible and prominent place in our professional
lives, the position of Secretary/Treasurer has become more im-
portant and more complicated and has required additional ex-
pertise. As ILAS members have witnessed, Jim has responded
wonderfully to these new challenges. That ILAS is on a sound
financial footing, with detailed documentation of our financial
and other records, is testimony to Jim’s talents, hard work, and
commitment to ILAS.

I hope that you will join me in conveying our deep appreci-
ation to Jim for his service to ILAS. I am happy to know that,
according to our Bylaws, Jim remains a member of the ILAS
Board for one year after leaving office (until 28 February 2001).

On 1 March 2000, Jeff Stuart began a 4-year term as ILAS
Secretary/Treasurer. I look forward to working with Jeff for the
next two years. I very much appreciate Jeff’s willingness to
assume this important position, and I am very confident that he
will be a big asset to ILAS and the ILAS Community. Welcome
aboard, Jeff! I also want to take this opportunity to thank two
retiring members (as of 29 February 2000) of the Board, Jane
Day and Volker Mehrmann, for their important service to ILAS,
and to welcome two new members of the Board, Harm Bart and
Steve Kirkland.

Richard A. BRUALDI, ILAS President: brualdi@ math.wisc.edu
Dept. of Mathematics, University of Wisconsin-Madison
Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, USA



Special Functions

George E. Andrews, Richard Askey, and Ranjan Roy
This treatise presents an overview of special functions,
focusing primarily on hypergeometric functions and
the associated hypergeometric series, including Bessel
functions and classical orthogonal polynomials, and
using the basic building block of the gamma function.
In addition to relatively new work on gamma and beta
functions, such as Selberg’s multidimensional integrals,
many important but relatively unknown nineteenth
century results are included.

Encyclopedia of Mathematics and its Applications 71

2000 680 pp.

0-521-78988-5 Paperback about $34.95

New Perspectives in

Algebraic Combinatorics

Louis J. Billera, Anders Bjorner, Curtis Greene,
Rodica E. Simion, and Richard P. Stanley, Editors
Based on a full academic-year program on combinatorics
at the MSRI, with special emphasis on its connections
to other branches of mathematics, this book features
work done or presented at the program’s seminars. It
contains contributions on matroid bundles, combina-
torial representation theory, lattice points in polyhedra,
bilinear forms, combinatorial differential topology

and geometry, Macdonald polynomials and geometry,
enumeration of matchings, the generalized Baues
problem, and Littlewood-Richardson semigroups.
Mathematical Sciences Research Institute Publications 38

1999 355 pp.

0-521-77087-4 Hardback $49.95

Proofs and Confirmations
The Story of the Aiternating Sign Matrix Conjecture
David M. Bressoud
“...one of the most brilliant examples of mathematical
exposition that [ have encountered in many years of read-
ing the same. Bressoud rewards...readers with a panorama
of combinatorics today and with a renewed awe at the
human ability to penetrate the deeply hidden mysteries
of pure mathematics.”

—Herbert S. Wilf, Science*

Spectrum

Copublished with the Mathematical Association of America
1999 290 pp.

0-521-66170-6 Hardback $74.95
0-521-66646-5 Paperback $29.95

Permutation Groups
Peter Cameron

This text summarizes the latest developments in
this area with an introduction to relevant computer
algebra systems, sketch proofs of major theorems,
and many examples of applying the Classification
of Finite Simple Groups. It is aimed at beginning
graduate students and experts in other areas, and
grew from a short course at the EIDMA institute
in Eindhoven.

London Mathematical Society Student Texts 45

1999 230 pp.

0-521-65378-9 Paperback $25.95

Enumerative Combinatorics
Volume 1
Richard P. Stanley

“..sure to become a standard as an introductory
graduate text in combinatorics.”

—Bulletin of the AMS

“..will engage from start to finish the artention of

any mathematician who will open it ar page one.”
—Gian-Carlo Rota

Cambridge Studies in Advanced Mathematics 49

2000 338 pp.
0-521-66351-2 Paperback $29.95
Volume 2

Richard P. Stanley

This second volume covers the composition of
generating functions, trees, algebraic generating
functions, D-finite generating functions, noncom-
mutative generating functions, and symmetric
functions.

“...the trove of exercises with solutions will form a
vital resource; indeed, exercise 6.19 on the Catalan
numbers, in 66 (1) parts, justifies the investment
by itself. Both volumes highly recommended for
all libraries.”

—Choice
Cambridge Studies in Advanced Mathematics 62

2000 ¢.592 pp.

0-521-78987-7 Paperback about $34.95

Available in
bookstores or from

CAMBRIDGE
UNIVERSITY PRESS

40 West 20th Street, New York, NY 10011-4211
Call toli-free 800-872-7423 Web site: www.cup.org
MasterCard/VISA accepted. Prices subject to change.
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IMAGE Problem Corner: Problems and Solutions

We are still hoping to receive solutions to Problems 18-1, 19-3b, 21-2 & 23-1, which are repeated below; we present solutions to Problems 23-2
through 23-7, which appeared in IMAGE 23 (October 1999), pp. 28 & 27. In addition, we introduce 9 new problems (pp. 16—17) and invite readers
to submit solutions as well as new problems for publication in IMAGE. Please send all material in IIEX — (a) embedded as text in an e-mail to
styan@total.net and (b) 2 copies (nicely printed please) by p-mail to George P. H. Styan, PO Box 270, Franklin, VT 05457-0270, USA. Please
make sure that your name as well as your e-mail and p-mail addresses (in full) are included!

Problem 18-1: 5 x 5 Complex Hadamard Matrices
Proposed by S. W. DRURY: drury @ math.megill.ca; McGill University, Montréal, Québec, Canada.

Show that every 5 x 5 matrix {/ with complex entries u; ; of constant absolute value one that satisfies /*I/ = 5/ can be realized

as the matrix (w’*); ; where w is a complex primitive fifth root of unity by applying some sequence of the following: (1) A
rearrangement of the rows, (2) A rearrangement of the columns, (3) Multiplication of a row by a complex number of absolute value
one, (4) Multiplication of a column by a complex number of absolute value one.

The Editor has still not received a solution—indeed even the Proposer has not yet found a solution!

Problem 19-3: Characterizations Associated with a Sum and Product

Proposed by Robert E. HARTWIG: hartwig@ math.ncsu.edu; North Carolina State University, Raleigh, North Carolina, USA,
Peter SEMRL: peter.semrl@fmf.uni-ij.si; University of Maribor, Maribor, Slovenia,

and Hans Joachim WERNER: werner@ united.econ.uni-bonn.de; Universitit Bonn, Bonn, Germany.

(a) Characterize square matrices A and B satisfying AB = pA + ¢B, where p and ¢ are given scalars.
(b) More generally, characterize linear operators A and B acting on a vector space X’ satisfying ABz € span(Az, Bz ) for every
rEX.

The Editor has still not received a solution to Problem 19-3b. The solution by the Proposers to Problem 19-3a appeared in \MAGE
22 (April 1999), p. 25. We look forward to receiving a solution to Problem 19-3b.

Problem 21-2: The Diagonal of an Inverse
Proposed by Beresford PARLETT: pariett@math.berkeley.edu; University of California, Berkeley, California, USA,
via Roy MATHIAS: mathias @ math.wm.edu; College of William and Mary, Williamsburg, Virginia, USA.

Let J be an invertible tridiagonal n x n matrix that permits triangular factorization in both increasing and decreasing order of rows:
J=LiD,U, and J=U_D_L_.
(Here the L’s are lower triangular, the {/’s are upper triangular, and the D’s are diagonal.). Show that

(J™ ek = (D3 )k + (D= )i — Jex) L
The Editor has still not received a solution!

Problem 23-1: The Expectation of the Determinant of a Random Matrix
Proposed by Moo Kyung CHUNG: chung@ math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Let the m x n random matrix X be such that vec(X) is distributed as multivariate normal N(0, A @ I}, where *vec’ indicates the
vectorization operator for a matrix, the m x m matrix A is symmetric non-negative definite, © stands for the Kronecker product,
m > n, and 7, is the n x n identity matrix. For a given m x m symmetric matrix C, find E det(X’C'X) in a closed form involving
only C' and A. Is this possible? (Finite summation would also be fine.)

We look forward to receiving a solution to this problem!
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Problem 23-2: The Equality of Two 4 x 4 Determinants
Proposed by S. W. DRURY: drury@math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Show that
1 1 1 1 1 1 1 1
ax a2 az a4 a1 a9 as aq4
by by b3 by B by by by b3
airb; asby aszbs ayby a;bs  asby asby agbs

The solution by the proposer, who has no imagination, is to expand each determinant and to match the resulting expansions term for
term. The proposer has “first dibs” on this solution. Respondents are therefore asked to provide a more elegant solution.

Solution 23-2.1 by Chi-Kwong L1: ckli@math.wm.edu; The College of William and Mary, Williamsburg, Virginia, USA.

11 I 1 by by by ba
A= , B= , C = , D= ,
ai as a3 Qa4 a1b1 agbz a3b3 a4b4

b'_) b1 ) b4 53
C = s D =
albg agbl (13[)4 a4b3
If as # a1 and ay # as, then
A B A B .
det =det(A)det(D — CA™'B) and det| | =det(4)det(D—CA'B).
C D C D
Let ) )
F=DB'-CA™'=BE,B™' - AE, A7,
where
by O ba O
E = and FEs = .
0 bg 0 bl
Suppose
0 1
R=
-1 0
One readily checks that
RF'R™' = B(RER™Y)B™' — A(RE;R"1)A™' = DB —CA™Y,
and hence , A
det(D — CA™'B) = det(F) det(B) = det(RF'R™!) det(B) = det(D — CA™'B).
Thus

det(A) det(D — CA™'B) = det(A) det(D — CA™'B)

under the assumption that a; # a» and a3 # a4. By continuity, we see that the two determinants, as polynomials of the variables
a1,...,a4,b1,. .., by, are identical. Hence, the result is true for matrices over any commuting ring. O
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. lution 23-2.2 by Hans Joachim WERNER: werner@ united.econ.uni-bonn.de; Universitit Bonn, Bonn, Germany.

Our elementary solution to this nice problem will show that the determinant in question is even invariant to several further pairwise
permutations in the underlying matrix. In what follows, let a; and b; (i = 1,2, 3, 4) be given real numbers. For each pair (7, j), with
i,7 €{1,2,3,4}, we define

1 1 b; O
AZJ - and El] =
a 0 b
In addition, we put
Ags Aszg Ago Aszy
M= and N =
A1aE1s AszqE3q A1aEs1  AszaFas

We notice that det(M) = det(N) is the claim of Problem 23-2. In order to prove this identity, we begin by deriving an explicit
closed form expression for the determinant of Af.

THEOREM 1. Let M be defined as before. Then

det(M) = (a2 — ay){as — az)[bzbs + b1bo] + (ag — ay)(az — ag)[b1bs + babs] — (as — ay)(ag — az)[b1bs + babs). @

Proof: According to the well-known Laplace expansion theorem (see, e.g., §14.2 in [HJK, p. 92]), we obtain

det([ﬂ) = det(Alg) det(A34) det(E34) - det(Alg) det(A24) det(E24) + det(A14) det(A23) det(Egs)
+ det(Agg) det(AM) det(E14) - det(A24) det(Alg) det(Elg) + det(A34) det(Alg) det(Elg)

= det(Alg) det(A34)[det(E34) + det(E12)] -+ det(A14) det(Agg)[det(E14) + det(Egg)]
- det(/llg) det(flg,;)[det(Elg) + det(E24)]

by expanding det(M ) along the first two rows of M. Since, in view of det(A;;) = a; — a; and det(E;;) = b;b;, this is identical to
(1), the proof of Theorem 1 is complete. 0

The following corollary is an immediate consequence of the ‘symmetry’ in our expression (1) in Theorem 1.

COROLLARY 1.1: Let M be as before. Consider the following six groups of replacements

(Rl) b1 > bo, 63 A d b4 (RZ) b1 And b3, by b4
(R3) b1 — b4, bg Ld b3 (R4) a) < as, ag <> a4
(RS) a; <> as, Ao < Ay (R6) a) & ag, as & as,

and, for each i € {1,2,---,6}, let M; denote the matrix which is obtained from M according to (Ri). We then have

det(M;) = det(M),

irrespective of the choice of 1.

Since modifying M according to (R1) results in V, our corollary, in particular, shows that det(M) = det(NN) is, as claimed, indeed
correct. We continue with considering some special cases of the matrix M.
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COROLLARY 1.2: Let M be as before. In addition, let i, j,r, s be such thati < j, r < s, and {i, j,r,s} = {1,2,3,4}.
() If a; = a;, then (1) reduces to

det{M) = (=1)"" (a; — a,)(a; — as)(b; — b;)(bs — by).
(i) If b; = by, then (1) reduces to
det(M) = (=1) 9+ (b; — b, ) (b — bs)(a; — ai)(as — ar).

Corollary 1.2 follows directly from Theorem 1. We conclude our discussion of Problem 23-2 by extending our results to a slightly
more general class of matrices. The respective proofs follow along similar lines and are hence omitted.

THEOREM 2. Fori = 1,2,3,4: let a;, b;, ¢; be given real numbers. If
C1 &) C3 Cq

ai az as a4

W

ciby  caba cabs caby

albl (10[)2 a3b3 a4b4

then det(W) = 1))

(cras — czay)(csag — caaz){bsbs 4 bibs) + (cras — caar)(caas — csaz)(biba + babs) — (c1a3 — czar)(caaq — caaz)(bids + baba).

COROLLARY 2.1: Let W be defined as in Theorem 2. Consider the following six groups of replacements

(R1): by ¢> by, b3 > by

(R2): b1 <> b3, by v by

R3): b > by, b3 b3

R4): ay ©ras azerayg, C1$Cy €36 04

RS5): a3y a3, ayxérag, c14rc3, Co2rcq

R6): a) & as, axé>as, c ey, o s,
and, fori € {1,2,---, 6}, let W, denote the matrix which is obtained from W according to (Ri). Then

det(W;) = det(W),

irrespective of the choice of 1.
COROLLARY 2.2: Let W be as above. In addition, let i, j, v, s be such thati < j, r < s, and {1, j,r,s} = {1,2,3,4}.
() If a; = a; and ¢c; = c;, then (2) reduces to det(W) = (=1t (cra; — ciar ) (csai — cias)(b; — b;)(bs — by).
@) If b; = b;, then (2) reduces to det(W) = (—1)" ¥ (b; — b, )(bi — bs)(cia; — cjai)(cras — csar).

Reference
[HIK] H.-J. Kowalsky (1967). Lineare Algebra. Walter de Gruyter, Berlin.
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Problem 23-3: An Inequality Involving a Special Hadamard Product
Proposed by Shuangzhe L1U: Shuangzhe.Liu@ maths.anu.edu.au; Australian National University, Canberra, Australia.

Let A > 0 be an n x n positive definite Hermitian matrix with eigenvalues A; > .--- > \,, AT be the transpose of A, A~7 be the
inverse of AT, I, be an n x n identity matrix and & denote the Hadamard product. Show that then, in the Lowner ordering,

A2+ )\2
Ao AT < n
= O,

Solution 23-3.1 by S. W. DRURY: drury@math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Let H = A ® A~Tand let the spectral decomposition of Abe A = U*diag(A;....,A\,)U with U a unitary matrix. Then, a;;. =
> W/\guuc Also, A=1 = U*diag(AT}..., A7)0 and if we denote B = A7 = UTdiag(A7}...,\; )T, we have b,k =

v

Yo UmjA 1. We find that h; ik = a‘,kb,;v = Zz m UG AUk Ui A  Umi. We need to bound the largest eigenvaltue 4 of the

A
hermitian matrix H by — 7 (—1 + /\—) Now g is the maximum value of z* H = as = runs over all unit vectors. We find that
1

Z*HZ = E;h]k:k = Z (uek%umk)(wj ~JumJ /\[ Z |nzm| /\[/\_
J.k J.k.€m

where N is the normal matrix given by n¢,, = >, %k 2kUmk. By comparing the diagonal entries of NN* and N*/N we find that
for each ¢

D Ineml” =3 Inme?
m m

Furthermore, we have

Z [nem|? = Z W Uk Uk Umj T Sk = Z |22 =1
£&m

Jk,£m J

It remains to apply the following propositionto g », = |n¢,m|?.
PROPOSITION. Let ) = (q/m) be an n X n nonnegative matrix with the sum of all entries equal to 1. If further the (th row sum

equals the (th column sum for all {, thenforany Ay > Xo > --- > X, > 0,

Z )\_< /\1+/\n
qi,m my, S A

Proof. Let p; = log(A,) and let p = p1 — pn, so that —p < pe — pm < lf for all £ and m. Then we must show that
Z qeme™ "™ < cosh p. Towards this, we define the function ¢(z) = e” — Sinp

z. It is clear that ¢(+p) = cosh(p) and,
£,m

since ¢ is convex, that ¢(z) < cosh p for —p < & < p. Therefore, since the sum of all entries of () is unity,

Z qemp(pe — pm) < coshp

£Lm

which is the same as the desired conclusion since Z qem (pe — pm) = 0, by the condition on the row and column sums. a

Lm
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Problem 23-4: Trace and A Partitioned Matrix

Proposed by Heinz NEUDECKER: heinz@fee.uva.nl; Cesaro, Schagen, The Netherlands.

Consider the p x (p+ 1) matrix X’ = (z : Y’), where Y is p x p nonsingular and 2 # (1/p)Y’e, with e, the p x 1 vector with
each element equal to 1. Let M, := I, — (1/p)e, e;, denote the p x p centering matrix. Prove then that the trace

tr (X' Mp1: X)"'Y'M,Y) =p—1. 3)

Solution 23-4.1 by Giilhan ALPARGU: alpargu@math.mcgill.ca; McGill University, Montréal, Québec, Canada,
and Hans Joachim WERNER: werner@ united.econ.uni-bonn.de; Universitdt Bonn, Bonn, Germany.

We note first that there are situations under which the equality (3) does not hold! We derive, therefore, a condition which is both
necessary and sufficient for (3) to hold. Let the p x p matrix Y be nonsingular, let 2 # (1/p)Y’e,, and let X’ = (z, Y’). Then,
by some easy algebraic transformations, we obtain

!
- - P 1 L., /
X'Mpp1 X = —— [z — =Y’ - =Y Y'M,Y. 4

e p+1<$ P ep)<x P ep>+ ’ @
This shows that X' M, 1X can be written as the sum of two nonnegative definite matrices. Since x # (1/p)Y "¢, the first summand
has rank 1. Since Y is nonsingular and A, is an orthogonal projector with rank p — 1, it is also clear that the second summand has
rank p — 1. So one could be tempted to believe that X’ M, 41X is always nonsingular. But this, however, is not always the case.
More precisely, we see from our decomposition (4) that X’ A, 1, X is nonsingular if and only if z is such that

1
r— ;Y’ep ¢ R(Y'M,) 5)
[with R(-) denoting the range (column space) of the matrix ()] or, equivalently, if and only if

Y le, # 1. (6)

In other words, when going from Y'M,Y to X’ M, ;1 X, then the rank does not always go up by 1. The rank goes up if and only if
condition (5) is satisfied. This shows that (3) can hold only if this condition (5) is satisfied.

Let us, therefore, now assume that (5), or equivalently, that (6) holds. Then it is clear that the row spaces and the column spaces
of the two summand matrices in decomposition (4) do have only the respective origin in common. Such matrices are said to be
weakly bicomplementary to each other; see [WGI]. (A pair of weakly bicomplementary matrices is also often said to be a pair of
disjoint matrices; cf. [MFR].) If A, B is such a pair of weakly bicomplementary matrices, then each g-inverse of A + B is also a
g-inverse of A as well as a g-inverse of B; see [JMW, Th. 2.3]. Therefore, in particular,

Y'M,Y(X' Mpii X)7'Y'M,Y = Y'M,Y,

which in turn implies that the matrix Y/M,Y (X'M,41X)™" is a projector onto R(Y'M,Y). The rank of this projector thus
coincides with the rank of the matrix Y’ M, Y which is p — 1. Since for each projector its rank coincides with its trace, our proof is
complete. )

Remark: We note that the concept of weak bicomplementarity was used in Solution 22-3.4 (IMAGE 23, p. 23).

References

[JMW] S. K. Jain, S. K. Mitra & H. J. Werner (1996). Extensions of G-based matrix partial orders. SIAM Journal on Matrix Analysis and
Applications, 17, 834—850.

[MFR] S. K. Mitra (1972). Fixed rank solutions of linear matrix equations. Sankhya Series A, 34, 387-392.
[WGI] H. J. Werner (1986). Generalized inversion and weak bi-complementarity. Linear and Multilinear Algebra, 19, 357-372.

A solutionwas also received from Jos M. F. TEN BERGE: j.m.f.ten.berge @ ppsw.rug.nl; Rijksuniversiteit Groningen, The Netherlands.
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Problem 23-5: An Inequality Involving Diagonal Elements and Eigenvalues
Proposed by Alicja SMOKTUNOWICZ: smok@im.pw.edu.pl; Warsaw University of Technology, Warsaw, Poland.
Prove that each eigenvalue A of A € C"*” such that A # q; ; foralli = 1, ..., n, satisfies

n 9
T n

5 > T where TE =
sl A—aee [T T -

Solution 23-5.1 by Giilhan ALPARGU: alpargu @ math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Let A be an eigenvalue of A satisfying A # axy forall k = 1,...,n. By Gerschgorin’s Theorem we then have, for each k, that
A — ag k] < dy or, equivalently, |A — ax x|* < d7, where d), = Z?zly#k |a ;|. From the Cauchy-Schwarz Inequality we then
obtain d} < (n — 1)r7. Combining our observations now, for each ¥ = 1,2, ..., n, results in

2
1 T

n—17— |/\—ak,k|2'

Since this in turn implies

our proof is complete. ]

Solution 23-5.2 by R. B. BAPAT: mb@isid.ac.in; Indian Statistical Institute—Delhi Centre, New Delhi, India.

Let ) be an eigenvalue of A such that A # a; ; foralli = 1,..., n and let z be an eigenvector corresponding to A with Y ) _ | [zx|? =
1. Then .,
(/\—ak,k)xk: Z ag %35, k:l,...,n.
J=1.i#k
It follows, by the Cauchy-Schwarz Inequality, that
n n
N —aslPlzel? < | D kgl Sl k=10
J=1,j#k I=17#k
Therefore
D DR e DR ™
o el T Z};l,j#k l=il* - e’
where 7j = Y77, i lak ;7. (Since X # a;; foré = 1,...,n,  has at least two nonzero coordinates and hence 1 — |a4|* is
nonzero, k = 1, ..., n.) By the weighted arithmetic mean - harmonic mean inequality,
7 9
TE|” 1 1
Z - 7 2 5 3 2y = iz e ®
U= okl 7 o loklP(U = Jekl?) 1= 3050, fawl

Since . _; |zx|? = 1. an application of the Cauchy-Schwarz Inequality gives

n
1
Z |Jfk!4 Z )
k=1 n
and hence

1 S n
Ty ol = =1

®

The result then follows from (7)-(9). o
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Solution 23-5.3 by Lajos LASZ1LG: llaszlo@ludens.elte.hu; Eétvos Lordnd University, Budapest, Hungary.

Let X be an eigenvalue of the n x n matrix A satisfying A # a;;,7 = 1. ..n, and « be the associated eigenvector. The kth component
of Az — Az = 0 gives

2
n

X — agw)ex|* = Z agje;| < i gk,
ik
with
1/2 1/2
7 n
TR = Z laijQ and g = Z Ja;1*

J#k j#k

Here, ¢ # 0, for g, = 0 would imply z; = 0 and hence & = 0, which contradicts the definition of eigenvector. Thus we have

ri S

>
= q

3

[/\ — akk[L’

and, by summing up all the n terms,

r? ET n

% k
The last inequality follows from a result in Chapter 3, §D.6 of Marshall & Olkin [MOI]. O

Remark. Of several possible generalizations using Hélder’s inequality, one is especially interesting because of the same minimum
value. To see this write

(A — arr)zr| < max;zp|ak;]| Z lek| = Rie Qk,
J#k
where (); # 0 by the same reasoning as above, and obtain

since the minimum values for the functions f and 7 obviously coincide.

Reference
[MOI] A. W. Marshall & 1. Olkin (1979). Inequalities: Theory of Marjorization and its Applications. Academic Press, New York.

Solution 23-5.4 by the Proposer Alicja SMOKTUNOWICZ: smok@im.pw.edu.pl; Warsaw University of Technology, Warsaw, Poland.

We prove that this inequality is essentially based on the inequality between the harmonic and arithmetic mean:

c1+...+¢n n
273 I
n _+”'+Z

1

(10)
where ¢; > 0 for all ¢.

Let A be an eigenvalue of A, and suppose Az = Az,  # (. This means that
ar 121+ Qe 2o+ ...+ pnZn = ATk, k=1,...,n

which is equivalent to
n

()\—ak,k):ck: z Ak T4, k= 1,...,1?,.
J=1,5#k
We obtain

7

IN—aerlloe [ < D0 lawllzgl.

J=1.j#k
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forall K = 1, ..., n. By the Cauchy-Schwarz inequality we have
n q g9
2 2
S darilloi 1<, | D0 laesl NETRE
j=1,7#k J=1.J#k J=1,i#k
Thus
2 2 g 2
I)‘_ak,kll'tk,| < re” Z |.’L’j|, k:l,...,n. (11)
J=1,j#k

To simplify the notation, let

n

bk: Z |.’L’]‘ |2.

J=17#k
The elements we have just defined satisfy
= e lly® =l [

and
SThe=(m-1) |z’
k=1

Thus, we can rewrite (11) as follows | A — ag |2| xy |2 < ri? by, k = 1,...,n. Notice that by our assumptions, all b, and
| A — ag . | are positive. From this we obtain

n

Z i Z'“' = l,” be—n- (12)

|/\—akk|

By an application of the harmonic—arithmetic mean inequality (10), with c¢;, = 1/bx, we have

n?lz]l,” _ n
(ERF Zbk =71

n
2 k=1 b

This result and (12) give the desired inequality. m

Problem 23-6: Linear Combinations and Eigenvalues
Proposed by Jos M. F. TEN BERGE: j.m.f.ten.berge @ ppsw.rug.nl; Rijksuniversiteit Groningen, Groningen, The Netherlands.

Suppose we have two real matrices of order p x p, with p even, and with all eigenvalues imaginary. Is it possible to find p linear
combinations of the matrices that have at least one real-valued eigenvalue?

I expect that this is not always possible and that the set of matrix pairs that does allow real eigenvalues for linear combinations has
positive measure. Is there a place in the literature where I can find such things?

Solution 23-6.1 by Hans Joachim WERNER: werner@united.econ.uni-bonn.de; Universitdt Bonn, Bonn, Germany.

We begin with considering only 2 x 2 real matrices. From the literature, cf. e.g., [PLT, p. 55], we know that the characteristic
polynomial of a 2 X 2 matrix A, say, can be written in the form

ca(A) = A2 — Atr(A) + det(A); (13)

here tr(-) and det(-), respectively, denote, as usual, the trace and the determinant of the matrix (). By eig(A) we will denote the
set of all eigenvalues of A, i. ., the set of solutions to the characteristic equation c4(A) = 0. In view of (13), we have the following
characterization.
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THEOREM 1: Let I'm denote the set of all those real 2 x 2 matrices with purely imaginary eigenvalues. Then A € Im if and only if

ap as by b3
A= and B = .

where —aj — asas > 0 and —b3 — bobs > 0.

eig(A) = {:i:i\/—a% - agag} and eig(B) = {ii\/—b% - b2b3} )

For fixed real numbers p and ¢, what can we say about the eigenvalues of the matrix C' := pA+¢B? Since tr(A) = O and tr(B) = 0,

clearly tr{C) = 0 and so
eig(C) = {=/= det(C) }.

‘We notice that

Hence, if det(C') > 0 or, equivalently, if
—p*(a] + asas) — ¢ (b} + babs) > pq(2a1by + azbs + azb),

then C' € I'm. Otherwise, i.e., if det(C') < 0 or, equivalently, if

—p?(ai + azas) — ¢° (b7 + babs) < pq(2a1b1 + asbs + azbs), (14)

then C has, in contrast to 4 and B, two purely real eigenvalues, and we indicate this by writing C' € Re. The following example
illustrates that both situations can indeed occur for different values of p and 4.

ExAM : i
XAMPLE 1: Consider 1 -9 9 4

A= and B .=
2 -1 -3 =2

Then, eig(A) = {+iv/3}, eig(B) = {+iv/8}, eig(A + B) = {£V/T7}, eig(4 + 2B) = {1}, and eig(4 + 3B) = {Ziv21}.
Moreover, as the reader may verify,

4 1
A+qBeIm = q“>—8—(18q—3). m)

Our example, in particular, shows that there do exist matrices A, B € I'm with (i) pA + ¢B € I'm for infinite many pairs (p, ¢),
and, at the same time, with (ii) pA + ¢B € Re for infinite many other pairs (p, ¢). But does this also mean that both cases are
possible for any pair A, B € Im? That the answer is negative is illustrated by our next example.

EXAMPLE 2: Consider

0 0 0 1 0 1 0 O

0 g0 1 0 -1 0 0 0
A= and B =

0 -1 0 ¢ 0 6 0 1

-1 0 0 0 0 0 -1 0

Then, for each pair of real numbers p and ¢

eig(pA +¢B) = {+i\/p2 +¢2,—i\/p? + ¢, +i/p? + g%, —i/pr + qz} :
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o o 212
We notice, in passing, that the characteristic polynomial of pA + ¢B is cpa4qn(A) = A* + 2(p* + ¢%)A? + (p* + ¢°) . Moreover,
eig{A) = {44, =i, +4, —1}, eig(B) = {+i, —i,+1, -1} .
Hence, we do not only have A € I'm and B € Im but also pA + ¢B € I'm, for each pair (p, ¢) # 0. 0o

We now let A, B € Im be again given 2 x 2 matrices and assume that for some given real numbers p and ¢, the inequality (14)
strictly holds. Then, by continuity, (14) also holds for all other matrix pairs lying in the intersection of /'m and a sufficiently small
neighborhood of (A, B). Needless to emphasize once more, C' € Im only if tr(C) = 0.

Reference
[PLT] P. Lancaster (1969). Theory of Matrices. Academic Press, New York.

Problem 23-7: An Inequality Involving Rank and Matrix Powers

Proposed by Yongge TIAN: ytian@mast.queensu.ca; Queen’s University, Kingston, Ontario, Canada.

Let A be a square matrix of size n x n. Show that there are n vectors z,, z;,---,2,_; such that the square matrix
(xo, Azy, A’z0,---, A" l2,_1) is nonsingular if and only if

min{l +rank 4,2 + rank A%, -, n — 1 +rank A" 71} > n.

Solution 23-7.1 by John ASTON: jaston @bic.mni.mcgill.ca; McGill University, Montréal, Québec, Canada.

Below we make use of the fact that for each nonnegative integer i, we have R(A*) C R(A*"1), with R(-) indicating the range
(column space) of (-). Observe that we put A® := I,,, where I, stands forthe n x n identity matrix. For proving necessity, let there
exist n vectors xg, &1, - -, T,—1 such that the matrix

(170 Axy .- zqn_l;l‘n_]_)

is nonsingular. Observe that in view of our above inclusion this can happen only if rank(A') > n — i is satisfied for each i =
1,2,---,n — 1. Since the latter is equivalent to

min{l +rank 4,2 + rank A*, --- | n — 1+ rank A"} > n,
the proof of necessity is complete. To prove sufficiency, let rank(A?) > n — ¢ be satisfied for each i = 1,2,---,n— 1. In virtue of
our above-mentioned inclusion, we can then, of course, choose in backward order the vectors zi(i=n—-1,n-2,---, 1, 0) such
that the matrices
A/[i ::(Ai;l‘i Ai+1l’z’+i An_liﬂn—l), i:n—l,n—2,~-,1,0,
are all of full column rank. This completes the proof. O

A solution was also received from the Proposer Yongge TIAN: ytian@ mast.queensu.ca; Queen’s University, Kingston, Ontario.
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IMAGE Problem Corner: New Problems

Vet L, P26, $4Y, p. 217

Problem 24-1: Rank of a Skew-Symmetric Matrix
Proposed by S. W. DRURY: drury@math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Let A be a complex skew-symmetric matrix. Show that the non-zero singular values of A are equal in pairs and deduce that A
necessarily has even rank.

Problem 24-2: Nonnegative Matrix with All Entries Summing to One
Proposed by S. W. DRURY: drury@math.mcgill.ca; McGill University, Montréal, Québec, Canada.

Let Q be areal n x n elementwise nonnegative matrix with the sum of all entries equal to 1 and, for each j, the jth row sum equals
the jth column sum. Show that  is a convex combination of matrices R(X, o) described as follows. Let X be a nonempty subset
of I, = {1,2, ..., n} with k elements and let o be a cyclic permutation of X. Then the matrix R = R(X, o) is given by

1 ... . . .
rij = T ifie Xandj=o0(i) and r;; =0 otherwise.

Remark. This Problem is related to Solution 23-3.1 in this IMAGE, page 9.

Problem 24-3: A Possible Generalization of Drury’s Determinantal Equality
Proposed by George P. H. STYAN: styan@total.net; McGill University, Montréal, Québec, Canada.

Let A, B, C, D, E, and F be n x n complex matrices with

A B A B
R= and S =
C D E F

and det(C) = det(E) and det(D) = det(F). Find further necessary and sufficient conditions (if any) so that det(R) = det(S).

Remark. This problem is inspired by Problem 23-2 by S. W. Drury—see this IMAGE 24, pp. 6-8.

Problem 24-4: The Positive Definiteness of a Matrix
Proposed by Yongge TIAN: ytian@mast.queensu.ca; Queen ’s University, Kingston, Ontario, Canada.

Suppose that p(A) and ¢(A) are any two nonzero polynomials with real coefficients and without common roots and that A is any
complex square matrix of order m. Show that the Hermitian matrix p(A)p(A*) + ¢(A*)q(A) is always positive definite.
A-vau? docts A-SL | prarpla) +Z{4]’xz_m§ = [pray quesl KP‘A’ w'u,,,, &%WM

Problem 24-5: Two Products Involving Idempotent Matrices

Proposed by Yongge TIAN: ytian@mast.queensu.ca; Queen’s University, Kingston, Ontario, Canada. ,646.«{ W?xﬁ%
Mgt be morgane.
(a) Suppose that A and B are two complex Hermitian idempotent matrices of the same size. Show that M Q"%

/\ér(/‘ﬂ,""‘ém’\

A(A-B)Y'B=B(A-B)A=0, /1
l;vzz\) 4(1( M #0

where (-) denotes Moore-Penrose inverse.

(b) Suppose the complex matrix A is idempotent. Show that A( A — A” )tAr = A*(A— A")TA=0.




